
561

Appendix H

SPHERES COMMUNICATIONS

This appendix describes the communications system for the SPHERES experiment. It acts

as a reference specification for communications between the laptop and the satellites. The

interface specification has three sections. The first section describes the low-level inter-

face with the DR200x modules. Next, the basic link-level interface (packet structure, pro-

tocols) is introduced. Then the interaction between the GUI and the satellites during

testing is described.

H.1 DR2000 Configuration

The DR2000 firmware was customized for SPHERES to operate in transparent mode.

Under this mode, the DR2000 will send data without checking any contents or formats,

with only three important logical values: packet size and the to/from values. The DR2000

will consider as data any bytes sent to it and send them out 'as is' except for the escape

sequence $$ at the start of a packet which indicates that the data after the escape sequence

is a configuration word (described below).

H.1.1 DR2000 Packet Structure

The DR2000 packet structure consists of a pre-amble that excites the receiver crystal, a 5

byte header, the body of the packet, and a 2-byte CRC. Table H.1 lists the elements of the

DR2000 packet. The pre-amble is hard-coded in the DR2000 firmware. The header is cre-

562 APPENDIX H

ated using the configuration of the DR2000 (which is stored in FLASH, but should be

updated every time a project starts for data safety). The body are the bytes received by the

transmitting DR2000. The CRC is created automatically from the data. Note that the body

is the only thing that must be sent to the DR2000; the header and CRC's are completely

transparent to the transmitter or receiver and are never seen by the receiver. Figure H.1

depicts the packet structure.

Figure H.1 DR2000 packet structure

TABLE H.1 DR2000 packet structure

Byte Width Name Function
0 – 2 3 pre-amble A hard-coded element of the firmware

which sends a sequence of 0xAA and
0x55 bytes to excite the receiving satel-
lite’s crystal.

3 1 to The intended recipient.
Use 0x00 to indicate broadcast mode.
Because setting the TO address takes
approximately 400ms, the TO address
should always be set to 0x0 (broadcast)
except in special circumstances.

4 1 from This satellite’s ID. Only packets sent with
the to equal to from or broadcast mode
will be transferred out of the DR2000. All
other packets will be discarded.

5 1 chk 8-bit checksum of the packet “body”.
6 1 len The length of the body in the packet. The

maximum length is stored in the configu-
ration, but this length may be variable in
transparent mode.

pre-amble to from chk cmd len body CRC1 CRC2

DR2000 Header n-byte
variable length data payload
maximum length = len

APPENDIX H 563

The start of a packet must be well understood, since an escape sequence in the middle of a

packet is ignored. A packet is transmitted out of a DR2000 whenever:

• "len" bytes are received by the DR2000, in which case a packet is sent out
immediately after calculating the CRC. Byte number "len+1" is considered
the start of the next packet.

• There is a pause larger than 2ms between bytes. After the pause the DR2000
calculates the CRC for the small packet and updates the len byte in its actual
transmission. The receiver will expect len bytes and extracts the body. Only
the number of transmitted bytes are sent out of the receiver, the packet is not
padded to complete the len specified in the receiver.

Therefore, it is important to ensure that a packet is sent continuously out of a serial port,

without pauses of more than 2ms. While the receiving satellite may have timeouts that

would allow it to reconstruct a packet that is divided among multiple DR2000 transmis-

sions, there will be twice the DR2000 overhead.

H.1.2 DR2000 Commands

The DR2000 must also be configured to operate in the right mode and frequency prior to

operation with the SPHERES system. This initialization occurs automatically in the

SPHERES satellites, but must be performed individually in every external element (such

as the communications laptop). Table H.2 lists the DR2000 commands that are pertinent

to the SPHERES program; Table H.3 lists the valid hardware ID’s used in SPHERES.

7 –
(n+7)

n
(0<n<25
6)

body The body of the packet is transmitted ‘as
is’ to the intended satellites. The body of a
packet cannot start with the escape
sequence $$, but it may otherwise contain
any bytes.

(n+8) –
(n+9)

2 CRC A two byte CRC created out of the of the
packet header and body (excludes pre-
amble).

TABLE H.1 DR2000 packet structure

Byte Width Name Function

564 APPENDIX H

These commands set the satellites to the default configuration every time they boot. All

programs should do the same. After this is done once, there is no need to use these values

again. As an example, the sequence used by SPHERE satellite with serial number 1 is:

TABLE H.2 DR2000 configuration commands

Command Name Description SPHERES
$$TOADxx To address Set the TO address configuration

in FLASH.
xx = 00

$$FRADxx From
address

This satellite’s address. Table 3-3
lists the valid values in detail.

Ground:
 xx = 30
Satellites:
 xx = 31 – 39

$$SIZExx Maximum
packet size

The maximum length of the body
before the DR2000 immediately
sends out a packet

xx = 25

$$RFMDx DR2000
Mode

Changes the mode of the DR2000
between transparent (x=1) and
structured (x=0).

x=1

$$RDSPx RF baud
rate

Changes the baud rate of the RF
transmissions. Always use x=0 for
57.6kbps

x=0

TABLE H.3 Valid satellite IDs for the to and from fields

Satellite Name HW Address (hex)
Broadcast 0x00
Laptop/Ground 0x30
SPHERE s/n 1 0x31
SPHERE s/n 2 0x32
SPHERE s/n 3 0x33
SPHERE s/n 4 0x34
SPHERE s/n 5 0x35
SPHERE Defaulta 0x39
a. A SPHERE satellite with corrupted memory will

reset its satellite ID to 0x39. The satellite must
then be reconfigured with a valid ID between
0x31-0x35.

APPENDIX H 565

$$RFMD1

$$TOAD00

$$RDSP0

$$SIZE25

$$FRAD31

H.2 Link-layer Interface

This section describes the low-level interface to the SPHERES communications system.

SPHERES utilizes two communications channels (868MHz and 916MHz) operating at

56.7kbps. Nominally the 868MHz channel is used for satellites-to-laptop (STL) communi-

cation, while the 916MHz channel is reserved for satellite-to-satellite (STS) communica-

tion. Since the interface to both radios is identical, this channel assignment is strictly a

matter of convention and may be reconfigured if necessary (e.g. in the event of a hardware

failure). Channel bandwidth is divided between transmitting stations (e.g. satellite and lap-

top) using a time division multiple access (TDMA) protocol. Relative bandwidth assign-

ments are user definable. Data packets are fixed-length and consist of a structured header

and a user-defined payload.

This section first examines the packet format and then examines how this format relates to

the TDMA scheme.

H.2.1 SPHERES Packet Structure

The SPHERES communication system is based around a fixed-size packet scheme. The

packet structure consists of a 5-byte header and a 32-byte data section. Recent revisions to

the DR2000 firmware allow variable-length packets, but most 'standard' packets to date

use the common packet length. The packet structure is depicted in Figure H.2. The

DR2000 adds its own header (5-byte) and CRC (2-byte) to each packet transmitted by the

radio. These components are stripped off of received packets before RS-232 transmission.

566 APPENDIX H

Important sizes are depicted by arrows in the picture. The base packet length is defined by

the body of the packet. We have selected a packet-body size of 32bytes. This gives a rea-

sonable compromise between unused capacity and header overhead. The hardware packet

size, set on the DR2000, is five bytes longer than the body to account for the SPHERES

packet. header. The header carries information about the packet contents and routing. The

header is described in Table H.4.

Figure H.2 SPHERES packet structure (n=32)

TABLE H.4 SPHERES header structure

Byte Length Field Description
0 1 to This contains the receiver hardware ID as seen by each indi-

vidual SPHERE satellite. Each physical satellite is assigned
a unique hardware identifier in the range 0x31-0x35
(hex). Acceptable values are listed in Table 3-3. These
addresses must be associated with a ‘logical’ identity (e.g.
SPHERE1, SPHERE2, SPHERE3) in the users program.
This allows us to map between logical and hardware
addresses, so that any satellite can take on any task.

1 1 from This bit contains the station ID of the transmitting satellite.
The number must meet the same characteristics as described
in the to field.

2 1 chk The checksum field is an 8-bit checksum of the body of the
packet, used by the SPHERES system for error detection
(but not error correction). The checksum is a simple
unsigned sum of the unsigned bytes of the body, truncated
to 8 bits. It is calculated as follows:
 chk = 0;
 for (i=0; i<len; i++)
 chk += body[i];
 chk = chk & 0xFF;

DR2000 HDR to from pkt cmd len body CRC1 CRC2

(n+5) bytes = DR2000 packet size

n-byte
variable length data payload

SPHERES Header

APPENDIX H 567

To send a packet, one first generates a header according to the above structure. This is fol-

lowed by the n-byte body of the packet. At the link-layer, the format of this section is arbi-

trary. The header and body must be sent through the serial port to the DR2000. For any

standard packet type, unused bytes should still be sent using a filler character. Sending

0x0 or perhaps 0xAA for better bit balancing are good choices.

Inter-packet time must be carefully controlled since the DR2000 does not provide any

flow-control information. If packets are sent to the DR2000 too rapidly, data loss will

result. There are four stages to each packet transmission (Figure H.3) First, the packet is

sent serially from the TX-computer (DSP or CPU) to the TX-DR2000. The packet is then

copied to an internal transmit buffer, where the DR2000 header and CRC are added. Next

3 1 cmd This is the command field that describes the type of packet.
The command field also indicates which channel is being
used (868 or 916). Each command byte is structured as fol-
lows:
Bit Description
0-5 command (range 0-63 decimal, 0x0-0x3F)
6 indicates whether the packet must be acknowledged. This
bit is only used for communications between the Ground
station laptop and the SPHERES satellites; no other
acknowledgement structure has been implemented.
7 channel: 0 = 868, 1 = 916
To build a command byte, one must use the following for-
mula:
 cmd = CHANNEL + ACK + COMMAND
Where:
 CHANNEL = 0x00 for 868
 CHANNEL = 0x80 for 916
 ACK = 0x40 if ACK is required
 ACK = 0x00 for no ACK
 COMMAND = 0x00 – 0x3F
Currently defined command assignments are detailed in
Section 6 and in the source file commands.h.

4 1 len The length is checked by the receiving satellite to ensure a
full packet is processed, and that a new packet is not over-
written if a short packet is transmitted. The length must be
set to a value between 0-32, as a 32 byte data size is the
longest the DR2000 will allow with the default settings.
The default value for len in SPHERES is 32 (0x20).

TABLE H.4 SPHERES header structure

Byte Length Field Description

568 APPENDIX H

the packet is transmitted, via wireless, from the TX-DR2000 to the RX-DR2000. The last

step involves the serial transfer from the RX-DR2000 to the RX-Computer.

To ensure that transmissions do not overlap there must be a minimum time-separation

between packets, to ensure the DR2000 buffers are not overwritten. The minimum separa-

tion between the start of two packets is:

tmin = ts + tbuf + trf (H.1)

where ts is the transmission time between the SPHERES avionics and the DR2000 over

the standard UART line, tbuf is the buffering time of the DR2000 and trf is the RF transmit

time.

The UART transmission time of an n byte packet is:

 (H.2)

Each byte sent over a standard UART line is added one stop bit and one start bit, for a total

of 10-bits per transmitted byte. The SPHERES header is five bytes long, which must be

transmitted over the RS232 line to send the packet. The RS232 line is operated at

115.2kbps. For a packet where n=32 ts=3.21ms.

Figure H.3 Packet transmission sequence

time

Serial TX

RF TX

tbuf

ts trf ts
tbuf

ts
n +()---------------------=

APPENDIX H 569

The measured buffering time is tbuf = 600µs.

For a packet with n bytes in the body, the RF transmission time can be calculated as fol-

lows:

 (H.3)

There are a total of 15 header bytes (5 SPHERES header bytes, 3 pre-amble bytes of the

DR2000, 5 DR2000 header bytes, and the 2-byte CRC), therefore the (n+15). Further,

each byte is converted to a 12-bit word for bit balancing purposes, and added a stop and a

start bit, making each word 14-bits long. The RF transmission frequency is 57.6kbps =

57600 bits per second. For the standard SPHERE package where n=32 trf = 11.42ms.

Therefore, for the SPHERES standard packet, to total time between packet starts must be

at least:

tmin = 3.2ms + 0.6ms + 11.42ms = 15.22ms (H.4)

H.2.2 Time-Division Protocol

Access to the two RF channels must be managed to ensure that transmitting stations do not

inadvertently transmit at the same time. Simultaneous transmissions would cause loss of

data and degrade the overall productivity of the SPHERES experiment. We have chosen a

time-division multiple access scheme for channel management. In such a scheme each sta-

tion has an assigned time-interval (or window) in which it is permit-ted to transmit. At

other times, the station remains in receive mode and must store outgoing packets until its

next transmit window. Since most of the communications traffic in our experiments are

expected to be predictable and periodic, TDMA is a good access scheme that ensures fair

and efficient access to the radio channels.

The SPHERES TDMA scheme is depicted graphically in Figure H.4. The basic unit of

time is called a frame. During each frame, all stations are given a chance to transmit. A

frame begins with the receipt of a synchronization packet from the laptop. Within a frame,

trf
n +()------------------------=

570 APPENDIX H

stations are assigned a transmit window by specifying a start time and a stop time. The

frame timers on each satellite will not reset until the next synchronization packet is

received.

We adopt this synchronization scheme because the we have limited control over the timed

behavior of the laptop. Moreover, in tests of the standard windows timer routines, we have

observed temporal jitter of up to about 20ms. Making the laptop the master time reference

rather than a slave, eliminates the need to worry about synchronizing the laptop to the

internal satellites time. Because the laptop dictates the frame size by sending the synchro-

nization packets, and because the laptop software cannot change due to NASA regula-

tions, the frame size has been fixed to 200 ms. Table H.5 lists the standard 200ms frame

specification for the STL channel; Table H.6 lists the STS frame.

Figure H.4 Time Division Multiple Access scheme

TABLE H.5 STL standard frame specification (200ms frame)

Number of Stations Station Length (ms) Start (ms) Stop (ms)
4 SPH1

SPH2
SPH3
GND

53
53
54
40

0
53

106
160

53
106
160
200

3 SPH1
SPH2
GND

80
80
40

0
80

160

80
160
200

2 SPH1
GND

160
40

0
160

160
200

GND SPH1 SPH2 SPH3 GND SPH1 SPH2 SPH3

time

frame window

APPENDIX H 571

We make the following notes about the frame specification process:

• The satellite ID's are the logical identifications of the SPHERES satellites,
and not the hardware ID (i.e., SPHERE1, SPHERE2, etc., rather than hard-
ware ID 0x31, 0x32, etc.).

• To completely describe the frame structure we need to specify the frame
length, and start and stop times for each station. These times are offsets from
the start of a frame and are measured in units of ms.

• After a frame expires, the next frame will not begin until the next synchro-
nizing packet is received. This satisfies the safety related requirements that
will disable the satellites if it loses communication with the laptop.

• Users and guest scientists can specify the frame structure for their experi-
ments. This can change from test to test and is specified in the GUI-ini file
provided by the user.

• Stations need not receive equal windows.

• The ground (laptop) station must be the last window on the STL channel.
This is to allow for frame synchronization (see below). This window must be
at least 40 ms long. If the laptop has additional data to transmit, it should
first transmit the extra packets, and then send the synchronization.

• Users are solely responsible for ensuring that their window divisions are
consistent. As a matter of convention, users may freely configure the STS
channel but should employ the standard STL assignments in most circum-
stances.

H.2.3 Packet Acknowledgement

The SPHERES core operating system implement a simple packet acknowledgement

scheme dedicated to ensure commands from the laptop are received and executed syn-

TABLE H.6 STS standard frame specification (200ms frame)

Number of Stations Station Length (ms) Start (ms) Stop (ms)
3 SPH1

SPH2
SPH3

66
66
68

0
66

132

66
132
200

2 SPH1
SPH2

100
100

0
100

100
200

1a SPH1 200 0 200

a. STS use during single satellite operation is useful if there is a DR2000 that is listening on that channel in order
to download telemetry data.

572 APPENDIX H

chronously between multiple satellites. This packet acknowledgement is implemented by

using the cmd field of the SPHERES header and a byte in the state-of-health (SOH)

packet (described below), which is sent to the laptop. While other satellites also see the

SOH, and could conceivably use the same system to require inter-satellite acknowledge-

ments this is not recommended. First, the state-of-health packet is only transmitted via

STL, therefore only STL acknowledgements are possible. Second, the SPHERES core

software does not contain functions that process an acknowledgement, and therefore the

user would still need to implement special procedures. Therefore, any other type of packet

acknowledgement is the responsibility of the guest scientist.

Figure H.5 illustrates the packet acknowledgement sequence. In order to enable packet

acknowledgements bit 7 of the from field in the header must be set. When a SPHERE

satellite receives a packet that requires an acknowledgement, it will set its bit field (given

its logical satellite ID) to 1 in the SOH, and request that the SOH be sent immediately. The

SOH will be sent to the laptop in the satellite's next TDMA window. Because the laptop is

the only unit expected to send packets that require acknowledgement and because that

packet causes the TDMA synchronization, the implemented scheme requires that a satel-

lite reply with the acknowledgement in the same frame. If the laptop does not receive an

acknowledgement in the same frame, it will retransmit the command. The laptop tracks

the number of acknowledgements expected, and will retransmit the command to all satel-

lites until it receives the required number of replies - all satellites always retransmit the

acknowledgements. Note that in this process, there is no memory of the original packet,

but rather a new one is created until the satellites respond correctly.

Because a packet acknowledgement is intended to synchronize the SPHERES test times,

every time that a SPHERE gets a command to start a test it should request for an acknowl-

edgement. The satellite, in turn, will always reset the test time when a command to start a

test is received, even if a test is already in progress. In the case where the satellite is

already running a test, the satellite will terminate that test immediately, and restart a test

with the new test command received. This behavior ensures that all satellites will be run-

APPENDIX H 573

ning the same test with the same time (within 1ms of each other) once the acknowledge-

ment process is complete.

H.3 Application Layer Interface

This section describes the different messages that are exchanged between the SPHERES

satellites and the laptop base station. All other packages are not interpreted by either the

satellites or the laptop in a standard configuration (the user may create message receiver

procedures for the satellites, but that is at a higher level interface and is part of the Guest

Scientist Program interface, not of the basic communications interfaces).

H.3.1 Transmitted Messages

The laptop must generate two types of packets: General-Purpose Commands (GPC), and

Initialization Packets.

Figure H.5 Packet acknowledgement sequence example (1 lost packet)

Laptop Sends Cmd
from[7] = 1

SPHERE 1
send ack
Start test

SPHERE 2
send ack

Wait for 2 acks
- Receive 1 ack
Send cmd again

lost packet

SPHERE 1
send ack
Re-start test

SPHERE 2
send ack
Start test

Receive 2 acks

time

1
fra

m
e

1
fra

m
e

574 APPENDIX H

H.3.1.1 General Purpose Commands

Figure H.6 presents the contents of a general purpose command packet. These packet act

as frame synchronization for the satellites, control test execution, and resets. The laptop

broadcasts this packet every 200ms, creating the 200ms TDMA frame size specified

above. Because the laptop transmission frequency is fixed, the frame size is restricted to

200ms.

The bit fields for the different command types are described in Table H.7.

Starting & Stopping a Test

Sending a start or stop test are mutually exclusive; the SPHERES will check that if a test

start command is sent the stop is not present, or vice versa; if both commands are present

the packet will be ignored.

Figure H.6 General purpose command structure

Header:
to = 0x00
from = 0x30
chk = <checksum>
cmd = COMM_CMD_GENERALCMD (base + 0x21 = 0x41)
len = 0x20

0 1 2 3 4 5 6 7
Run Time
cmd

Run Time
unit

unused Test Number
SPHERE 1

Test Control
SPHERE 1

8 9 10 11 12 13 14 15
Test Number
SPHERE 2

Test Control
SPHERE 2

Test Number
SPHERE 3

Test Control
SPHERE 3

16 17 18 19 20 21 22 23
Test Number
SPHERE 4

Test Control
SPHERE 4

Test Number
SPHERE 5

Test Control
SPHERE 5

24 25 26 27 28 29 30 31
Reset
SPH s/n 1

Reset
SPH s/n 2

Reset
SPH s/n 3

Reset
SPH s/n 4

Reset
SPH s/n 5

STL Sync STS Sync Enter
Boot Load

APPENDIX H 575

TABLE H.7 General purpose command structure details

Byte
Size
(bits) Field Type IDa Description

0 1 (8) run time cmd unsigned char LOG This field is used to send the satellites
commands during tests for manual opera-
tions of the satellites. This field includes a
one-byte unsigned char command
that will be passed on to the SPHERE
controller software even while a test is
already in progress.

1 1 (8) run time satel-
lite

unsigned char LOG This field indicates the logical ID of the
commanded satellite. Any combination of
bits is allowed. The bit fields are:
Bit Description
 0 SPHERE 1
 1 SPHERE 2
 2 SPHERE 3
 3 SPHERE 4
 4 SPHERE 5
 5-7 unused

2-3 2 (16) unused - - -
4-5 2(16) test number

SPH1
unsigned short LOG This two-byte, unsigned integer specifies

the test number to start. This field is
ignored unless the Start Test bit is set.

6-7 2(16) test control
SPH1

unsigned short LOG The test control field is used to start and
stop tests as well as to command synchro-
nization of the satellites. All unused bits
are reserved for future use.
Bit Description
 0 reserved
 1 Start Test
 2 Stop Test
 3 Synchronize SPH time
 4-15 unused

8-9 2(16) test number
SPH2

unsigned short LOG See above.

10-11 2(16) test control
SPH2

unsigned short LOG

12-13 2(16) test number
SPH3

unsigned short LOG

14-15 2(16) test control
SPH3

unsigned short LOG

16-17 2(16) test number
SPH4

unsigned short LOG

18-19 2(16) test control
SPH4

unsigned short LOG

576 APPENDIX H

20-21 2(16) test number
SPH5

unsigned short LOG

22-23 2(16) test control
SPH5

unsigned short LOG

24

25

26

27

28

1(8)

1(8)

1(8)

1(8)

1(8)

reset
SPH 0x31

reset
SPH 0x32

reset
SPH 0x33

reset
SPH 0x34

reset
SPH 0x35

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

HW

HW

HW

HW

HW

This is a byte field to initiate reset of the
satellite. Because resets can cause loss of
data or resources, they must be repeated
several times in a row before a satellite
will process them. The following com-
mands are supported:
Bit Description Repeat
 0 Vent Tank 2
 1 Soft Reset 2
 2 Hard Reset 2
 3 916 Reset 2
 4 868 Reset 2
 5 Tank count 2
 6-7 unused

29

30

1(8)

1(8)

STL Sync

STS Sync

unsigned char

unsigned char

LOG Synchronize / Enable the corresponding
communications channel. This byte must
be received to synchronize every frame
and in turn enable communications on
this channel. The communications chan-
nel will not transmit after their initial win-
dow until a new Sync bit is received.
Each bit is used for a logical SPHERE
satellite:
Bit Description
 0 SPHERE 1
 1 SPHERE 2
 2 SPHERE 3
 3 SPHERE 4
 4 SPHERE 5
 5-7 unused

TABLE H.7 General purpose command structure details

Byte
Size
(bits) Field Type IDa Description

APPENDIX H 577

All packets that include a test start or test stop must request an acknowledgement as

described in Section H.2.3. Therefore, a start/stop test should be re-sent until the satellite

acknowledges its receipt. Note that the satellite will acknowledge the packet as soon as its

received, regardless of whether the start/stop test is valid at the time the command was

received. The satellite sending out the start/stop test is responsible to check the SOH

packet to determine if a test actually started or not. For example, if the satellite is currently

in "idle" mode and a "test start" command is sent, the satellite will acknowledge the packet

as received, but a test will not start because the "enable" button has not been activated.

H.3.1.2 Initialization Packets

Initialization packets are sent to the satellites so that they know the locations of the bea-

cons and the current temperature. Each satellite stores this information in the onboard

flash memory. When a satellites boots, it reads the flash and processes the beacon loca-

tions saved there. Since the satellites has no way of knowing the age of this data, it sets a

31 1(8) Enter Boot
Load

unsigned char HW This command forces the satellite with
corresponding hardware ID to enter boot
loader mode. Once the command is
received the satellite will not exit boot
loader mode until it has been re-pro-
grammed with a new program. One bit is
assigned to each satellite; any combina-
tion of bits may be used, since the boot
loader identifies which satellite is being
programmed. Note that due to its poten-
tial effect to erase the current program,
the command must be received 3 times in
a row take effect:
Bit Description Repeat
 0 SPH HW ID 0x31 3
 1 SPH HW ID 0x32 3
 2 SPH HW ID 0x33 3
 3 SPH HW ID 0x34 3
 4 SPH HW ID 0x35 3
 5-7 unused

a. The ID field specifies whether the command is destined for the HW - hardware ID or the LOG - logical ID.

TABLE H.7 General purpose command structure details

Byte
Size
(bits) Field Type IDa Description

578 APPENDIX H

bit in its state-of-health packets to signify that it is using old beacon data and has not

received new data since power-on. If the GUI sees that this bit is set, it can generate extra

initialization packets for the satellite. Such initialization is optional from the satellite’s

point of view - it will operate correctly without beacon initialization.

For simplicity, we have adopted the simple but somewhat redundant packet structure pre-

sented in Figure H.7 and described in Table H.8.

Figure H.7 Initialization packet structure

TABLE H.8 Initialization packet structure details

Byte
Size
(bits) Field Type Description

0-1 2(16) beacon num-
ber

unsigned short This value selects the beacon that the
packet applies to. Valid numbers are from
1-6.

2-3 2(16) temperature unsigned short The current temperature specified in
tenths of a degree C. (i.e. 22.0°C = 220).

Header:
to = <any valid address>
from = 0x30
chk = <checksum>
cmd = COMM_CMD_BEACON_INFO (base + 0x26 = 0x46)
len = 0x20

0 1 2 3 4 7
Beacon number Temperature X-Position

8 11 12 15
Y-Position Z-Position

16 19 20 23
X-Direction Y-Direction

24 27 28 29 30 31
Z-Direction reserved reserved reserved reserved

APPENDIX H 579

By convention, unused beacons should specify zeros for the direction vector. The direc-

tion vector of active beacons should be normalized (i.e. have unity magnitude).

Determination of Beacon Position and Direction

Definitions

• D = distance of beacon to seat track

• P(i) = (xi, yi, zi) = position of each used seat track hole location with respect
to the ISS

• B(i) = (xi, yi, zi) = corrected position of each beacon transmitter element

• q(i) = (xdir-i, ydir-i, zdir-i) = unit vector direction of each beacon

The following data must be known in order to solve the equations:

• Number of beacons in use

• P(i) for each beacon in use

• Gold and black angles for each beacon, from here on referred to as goldi and
blacki

Steps to determine position & direction

1. Location Correction

4-7

8-11

12-15

4(32)

4(32)

4(32)

X-position

Y-position

Z-position

float

float

float

4-byte IEEE floating point that specifies
the 3D position of the beacon in meters.
The value should be cast into an integer in
order to transmit it correctly; e.g.:
 float xPos = 3.187;
 int xVal;
 xVal =
 *((unsigned int *) &xPos);

16-19

20-23

24-27

4(32)

4(32)

4(32)

X-direction

Y-direction

Z-direction

float

float

float

4-byte IEEE floating point that specifies
the three element unit vector direction of
the beacon.

28-31 4(32) unused - -

TABLE H.8 Initialization packet structure details

Byte
Size
(bits) Field Type Description

580 APPENDIX H

Correct the location of the beacon transmitter itself by adding the offset of
the transmitter from the seat track. The correction depends on the location of
the seat tracks as per Table H.9

This calculates all the B(i)'s.

2. Move the frame origin to center of beacon area
First determine the total expansion of the beacon area; for all beacons find:

xmax = max(Bxi) (H.5)

xmin = min(Bxi) (H.6)

ymax = max(Byi) (H.7)

ymin = min(Byi) (H.8)

zmax = max(Bzi) (H.9)

zmin = min(Bzi) (H.10)

Now determine the 'center' of the beacon area:

TABLE H.9 Corrections and seat track locations

Track Correction
Overhead Bxi = Pxi

Byi = Pyi
Bzi = Pzi + D

Starboard Bxi = Pxi
Byi = Pyi + D
Bzi = Pzi

Deck Bxi = Pxi
Byi = Pyi
Bzi = Pzi – D

Port Bxi = Pxi
Byi = Pyi – D
Bzi = Pzi

APPENDIX H 581

xgc = (xmax + xmin) / 2 (H.11)

ygc = (ymax + ymin) / 2 (H.12)

zgc = (zmax + zmin) / 2 (H.13)

Now 'center' the beacon locations using the general center locations; for all
beacons:

B'(i) = (x'i, y'i, z'i) = (H.14)

x'i = xi - xgc (H.15)

y'i = yi - ygc (H.16)

z'i = zi - zgc (H.17)

3. Determine direction with unit vectors
The vector overhead depends on the beacon location as specified in
Table H.10.

where sign(#) is defined as:
if (# < 0) = (-1) (H.18)

if (# >= 0) = (1) (H.19)

4. Transmit Packets
A total of "i" packets will be transmitted, one for each beacon, the packet
should be composed of the bytes described in Table H.11.

TABLE H.10 Unit vector determination

Track Correction

Overhead
Deck

xdir-i = -sin(goldi) * sign(x’i)

ydir-i = -cos(goldi) * sin(blacki) * sign(y’i)

zdir-i = -cos(goldi) * cos(blacki) * sign(z’i)

Starboard
Port

xdir-i = -sin(goldi) * sign(x’i)

ydir-i = -cos(goldi) * cos(blacki) * sign(y’i)

zdir-i = -cos(goldi) * sin(blacki) * sign(z’i)

582 APPENDIX H

To store the float variables into a binary char packet the following cast
can be used:

float x[5], y[5], z[5];

int x_int[5];

unsigned char packet[32];

x[i] = <x final pos of beacon i>; // float

x_int[i] = *((unsigned int *) &x[i]); // int

memcopy (&packet[i*4], y[i], sizeof(int)); // unsigned char

H.3.2 Received Messages

The laptop must archive all incoming data from the radio to a binary file. Post processing

will be used to extract telemetry and experiment results. Although the laptop is free to

ignore the majority of this traffic, it must perform some preliminary packet parsing to

decode the state-of-health of each active satellite.

H.3.2.1 Packet Parsing

Packets are nominally 37 bytes long (including header), but loss of individual bytes has

been observed. Therefore, the laptop should use simple pattern matching on the incoming

TABLE H.11 Beacon location packet structure

Byte
Size
(bits) Field Type Value

0-1 2(16) beacon num-
ber

unsigned short i

2-3 2(16) temperature unsigned short (temp * 10)
4-7

8-11

12-15

4(32)

4(32)

4(32)

X-position

Y-position

Z-position

float

float

float

B’(i) = x’i

 y’i

 z’i

16-19

20-23

24-27

4(32)

4(32)

4(32)

X-direction

Y-direction

Z-direction

float

float

float

θ(i) = xdir-i

 ydir-i

 zdir-i

APPENDIX H 583

data to look for the header, which presents the best pattern to match. Specifically, look for

the following byte sequence presented in Table H.12.

Using only the TO, FROM, and LEN, fields the probability of a false positive match in a

random data stream of data is about 2x10-6. If we consider that we only need to parse the

state-of-health packets, we can also match by CMD field, and the TO field will always be

broadcast. This will drop the probability of false matching to about 4x10-9. This low fig-

ure indicates that direct, localized pattern matching (i.e. without memory of past PKT

fields, or when the last header was found), should provide sufficient performance.

H.3.2.2 State-of-Health Packets

State of health (SOH) packets are generated by each active satellite at 1Hz. These are

added to the onboard message transmit queues, so actual reception time of these messages

may vary depending on the current traffic levels. The packets are formatted as presented in

Table H.13.

TABLE H.12 Packet parsing matching sequence

Header Value Match
TO 0

0x30-0x39
FROM 0x30-0x39

0xB0-0xB9
PKT <any>
CMD <specific cmd>
LEN 0x25

TABLE H.13 State of Health packet structure details

Byte
Size
(bits) Field Type Description

0-3 4(32) Time Stamp unsigned int The time is measured in ms. The time is referenced
to either the power-on time, or the last time a time-
synchronization command was received.

4-7 4(32) Program ID unsigned int This is a unique identifier that is associated with
each program file.

584 APPENDIX H

8-11 4(32) Tank Usage unsigned int This is the aggregate firing-time of the thrusters on
the satellite (thruster-milliseconds). This value is
divided by the expected total gas availability to
provide a percentage estimate of the amount of
remaining propellant.

12-15 4(32) Test Time unsigned int Time in ms since the start of the current test.
16-19 4(32) Maneuver

Time
unsigned int Time in ms since the start of the current maneuver.

20 1(8) Last Test
Result

unsigned char Indicates the manner in which the last test com-
pleted. The following codes are defined:
Bit Description
 0 No data / test in progress
 1 Normal / OK
 2 Stop via hardware
 Enable button
 3 Stop via communications
 Stop Test
 4 Stopped due to communications
 failure
 5 Unknown Test
 6 Test Timeout
 9 Satellite Not Enabled
 10-255 User defined

21 1 (8) Temperature unsigned char The temperature set in the SPHERE metrology
section. The temperature is specified in tenths of a
degree C. (i.e. 22.0°C = 220).

22-23 2(16) IR Rcv
Counter

unsigned short The number of IR pulses observed since the last
reset.

24-25 2(16) Test Number unsigned short Currently running test number. A value of 0 indi-
cates that no test is running

26-27 2(16) Maneuver
Number

unsigned short Current maneuver number. This value is zero if no
test is running.

28 1(8) Status unsigned char This is a bit-field description of the SPHERES sta-
tus:
Bit Description
 0 Battery status
 (1 = OK, 0 = Low)
 1 STS Enabled
 2 STL Enabled
 3 Using old beacon data
 4-7 Unused

TABLE H.13 State of Health packet structure details

Byte
Size
(bits) Field Type Description

APPENDIX H 585

H.3.2.3 Background Telemetry

Active satellites automatically and periodically broadcast their onboard state estimates. It

is unlikely that the GUI will have to parse these packets, but the packet definition is

included in Figure H.8 and Table H.14 for completeness.

The telemetry packet use 16-bit short integers to transmit all the data, therefore these num-

bers are scaled using the factors presented in Table H.15. Multiply the received short inte-

ger by its factor to obtain the original values.

29 1(8) Operating
Mode

unsigned char This describes the current operating mode of the
satellite. The whole byte is used to identify the
mode:
Value Description
 0 Idle
 1 Transition
 (enable button pressed)
 2 Position Hold
 3 Running a test
 4 Suspend
 (due to lack of RF Sync)
 5-255 Unused

30 1(8) Satellite Role unsigned char Indicates the current logical role performed by the
satellite identified in the header by its hardware ID.
The SPHERES interpret this value to establish the
connection between logical address or role (i.e.
SPHEREn) and the hardware address (i.e. the
FROM field in the header).
Must be one of the following values:
Value Description
 1 SPHERE 1
 2 SPHERE 2
 3 SPHERE 3

31 1(8) Acknowledge-
ment

unsigned char This byte is set to 1 if the satellite is acknowledg-
ing a command received in the previous General
Command Packet received. It is zero if this is not
an acknowledgement.

TABLE H.13 State of Health packet structure details

Byte
Size
(bits) Field Type Description

586 APPENDIX H

Figure H.8 Telemetry packet structure

TABLE H.14 Telemetry packet structure details

Byte
Size
(bits) Field Type Description

0-2 3(24) time stamp unsigned int Current satellite time in ms. Note the most signifi-
cant byte of the unsigned integer must be masked
off to allow the role to be stored there.

3 1(8) satellite role unsigned char The current role of the satellite as described in
Table 6-4.

4-5

6-7

8-9

2(16)

2(16)

2(16)

X-position

Y-position

Z-position

short

short

short

The position of the satellite with respect to the glo-
bal frame. A 16bit signed short indicating the
value. The signed short is created by dividing the
original float using the factors presented in Table
6-5.

10-11

12-13

14-15

2(16)

2(16)

2(16)

X-velocity

Y-velocity

Z-velocity

short

short

short

The velocity of the satellite with respect to the glo-
bal frame, scaled as above.

Header:
to = 0 (Broadcast)
from = <unit hardware ID>
chk = <checksum>
cmd = COMM_CMD_TELEMETRY (base + 0x1B = 0x3B)
len = 0x20

0 2 3 4 5 6 7
Time Stamp Unit role X-Position Y-Position

8 9 10 11 12 13 14 15
Z-Position X-Velocity Y-Velocity Z-Velocity

16 17 18 19 20 21 22 23
ε1 quaternion ε2 quaternion ε3 quaternion η quaternion

24 25 26 27 28 29 30 31
ωx angular velocity ωy angular velocity ωz angular velocity unused

APPENDIX H 587

16-17

18-19

20-21

22-23

2(16)

2(16)

2(16)

2(16)

ε1 quaternion

ε1 quaternion

ε1 quaternion

η quaternion

short

short

short

short

The quaternion components that describe the atti-
tude of the satellite with respect to the global
frame, scaled as above.

24-25

26-27

28-29

2(16)

2(16)

2(16)

ωx rate

ωx rate

ωx rate

short

short

short

The angular velocities of the satellite with respect
to the global frame of reference, scaled as above.

30-31 2(16) unused - -

TABLE H.15 Telemetry data conversion factors

Element Units Maximum (0x7FFF) Function Factor
Position m 3.5m 3.5[m] / 32767[b] = .00010681 [m]/bit
Velocity m/s 1.0m/s 1.0[m] / 32767[b] = .000030519 [m/s]/bit
Quaternion - 1.0 1.0 / 32767[b] = .000030519 []/bit
Angular Velocity rad/s 1.5rad/s 1.5[rad/s] / 32767[b] = .000045778 [rad/s]/bit

TABLE H.14 Telemetry packet structure details

Byte
Size
(bits) Field Type Description

588 APPENDIX H

